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Abstract. The photonic neural processing unit (PNPU) demonstrates ultrahigh inference speed with low energy
consumption, and it has become a promising hardware artificial intelligence (AI) accelerator. However, the
nonidealities of the photonic device and the peripheral circuit make the practical application much more
complex. Rather than optimizing the photonic device, the architecture, and the algorithm individually, a joint
device-architecture-algorithm codesign method is proposed to improve the accuracy, efficiency and
robustness of the PNPU. First, a full-flow simulator for the PNPU is developed from the back end simulator
to the high-level training framework; Second, the full system architecture and the complete photonic chip
design enable the simulator to closely model the real system; Third, the nonidealities of the photonic chip
are evaluated for the PNPU design. The average test accuracy exceeds 98%, and the computing power
exceeds 100TOPS.
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1 Introduction
In recent years, deep neural networks (DNNs) have involved
large amounts of links and large data capacity, enabling the high
quality of data processing. DNNs have been applied in image
analysis, video tracking, language translation,1,2 etc. They are
mostly deployed in electronic hardware, including the central
processing unit, graphical processing unit, and tensor processor
unit. However, according to the Moore’s law, the electronic de-
vices are insufficient to cope with the explosive information cri-
sis, due to limited complementary metal-oxide semiconductor
(CMOS) fabrication techniques.3 The linearity and nonlinearity
of integrated optical devices for analog signal processing can
greatly improve the performance and power efficiency of these
artificial intelligence (AI) workloads.4 The calculation core of
the photonic neural processing unit (PNPU) is to complete ma-
trix multiplication in a short time. That breaks the bottlenecks
caused by system electronics parts. Matrix computation belongs
to basic information processing. The PNPU aims to accelerate

the calculation in the optical field to meet the growing demand
for computing resources and capacity.5

A PNPU with consisting of a Mach–Zehnder interferometer
(MZI) unit has demonstrated great progress in accelerating the
DNN applications, with over 100 GHz photodetection rates and
near-zero energy dissipation.3 Due to the addition of photonic
elements, the PNPU has higher data processing speed than an
electronic processing unit, and the amount of data that can be
processed is greatly improved.6,7 The photonic characteristics
allow PNPU with greater bandwidth and lower power
consumption.8 The PNPU provide some performance advantages
for neural network computing, such as shape factor, manufactur-
ability, cost, mechanical stability, and high-speed modulation.9

However, the PNPU suffers a challenge in robustness due to
the nonideal effects of the MZI unit, which is similar to other
neuromorphic systems.4,6 The nonideal effects include the
phase shift produced by the MZI unit’s low voltage control
resolutions7,10 and device-level noise on the MZIs caused by
the manufacturing imperfection and environment.11 Meanwhile,
the small data set-based fully connected neural networks cannot
reveal the accuracy loss due to the nonideal effects. The general*Address all correspondence to Bing Bai, baibing@bjtu.edu.cn
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neural processing unit (NPU) is much more complex than the
fixed application NPU accelerator, and it should be configured
to apply for different networks and applications. It is highly de-
manded to develop a methodology to evaluate PNPU with non-
ideal effects. The second section of the article mainly introduces
the theoretical model, including the calculation theory of MZI
and DNN. The third section shows the current chip architecture,
including the overall architecture and optical chip architecture.
Then based on the chip, the framework of optoelectronic hybrid
computing was constructed, including the simulator. Finally, the
application testing was demonstrated.

2 Theoretical model
Using programmable MZI array, simple neural network func-
tions can be realized.

2.1 MZI Unit

Commonly, MZI is used in optical circuits, and it usually com-
pletes the electrical or thermal modulation of photonic signals.
The schematic diagram of a programmable MZI is shown in
Fig. 1(a), including two 50:50 evanescent directional couplers
and two phase shifters (ϑ and φ). When using it as optical trans-
formation, it can be described by a 2 × 2 unitary matrix U (2)
matrix.12

Any unitary transformation can be decomposed into a
group ofU (2) matrix operations using cascading programmable
MZI.13

When the multilayer operation is to be carried out, as shown
in Fig. 1(b), it realizes matrix multiplication completely opti-
cally. In each layer, the input optical signal first undergoes a
linear matrix multiplication of a linear unit. The transmitted data
are transmitted to the computer layer, and then feed forward and
backpropagation algorithms can be trained. The weighted
matrix is replaced by ðϑij;φijÞ of each MZI and optimized
by calculating the gradient of the loss function. Each layer is
composed of an optical interference unit (OIU) and a nonlinear
unit (ONU). As shown in Fig. 2, fðxÞ in the ONU is a nonlinear
function. The main function of OIU is to complete matrix multi-
plication. With singular value decomposition (SVD) method,
the matrix M can be decomposed into

M ¼ UΣV�; (1)

where U is the matrix of m ×m,
P

is the matrix of m × n, and
V� is the conjugate of the matrix of n × n. U,

P
, and

V� can be realized by the MZI array. In this way, the

multiplication of the optical matrix can be accomplished by
the MZI array.

As this section has discussed, the optical MZI unit in
Fig. 1(b) performs a matrix–vector product. The different sets
of vectors can perform a general matrix-matrix product
(GEMM) sequentially, which is a key function in the basic linear
algebra subprograms (BLAS).14

2.2 DNN with MZI Unit

Most of DNN algorithms consist of convolutional (CONV)
layers and full connected layers, and they are back-to-back con-
nected and run sequentially. The computer-intensive operations
of the CONV layers and fully connected layers are CONV and
vector–matrix multiplication.

There are two ways to implement the CONVoperation with
the MZI unit:

1. Software patching to transform the CONV to the GEMM:

The CONVoperation can be transformed to the GEMM op-
eration by performing a “patching” technique, and the GEMM
can be naturally operated in the optical MZI unit. The expres-
sion of the CONV layer is

yij;k ¼
X
i0j0;l

Ki0j0;klxðsxiþi0Þðsyjþj0Þ;l : (2)

Here, the input is xij. Kij is one pixel of the W ×H feature
map with C channels. kl is one element of the Kx × Ky × C0
convolution kernel with C channels. k is an element’s value of
the output feature map to next layer. The sx and sy are the strides
of the convolution.

As shown in Fig. 3, the ‘patching’ technique works transform
the CONV operation to the GEMM operation. After the kernel
strides over the input image with the fixed step, we can get a

Fig. 1 (a) Schematic diagram of programmable MZI. (b) Silicon photonic neural network based on
MZI array with eight input ports and eight output ports.

Fig. 2 Single-layer optical interference and nonlinear element on
artificial neural network.
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bunch of the overlapped matrices, called “patches.” The patches
are then rearranged to express a matrix X with the size of
ðKx × Ky × CÞ × ðW0 ×H0Þ. The 4D kernel matrix is
rearranged to form a 2D matrix K with the size of
ðKx × Ky × CÞ × C0. It can be computed by performing the ma-
trix product of the Y ¼ K � X. The CONV operation is trans-
formed to the GEMM operation after the patching technique.

2. Hardware configurable delay chain (CDC):

The other method for transforming the CONV to the GEMM
is adding a CDC and an adder in the output of the MZI units. An
example of 2D 3 × 3 CONV with stride of 1 is shown in Fig. 4.
The vector–matrix multiply expression can be expanded to be
X � K3×3 ¼ ðx1 � k1; x1 � k2; x1 � k3Þ. Here the X is the input
vector; and k1, k2, and k3 are the column vectors of the
K3 × 3 matrix. Each row of the input feature map can be repre-
sented as X ¼ ðx1; x2; x3; x4;…Þ. And each row of the 3 × 3
CONV output is
8><
>:

O1 ¼ x1 � k1 þ x2 � k2 þ x3 � k11
O2 ¼ x2 � k1 þ x3 � k2 þ x4 � k11
O3 ¼ x3 � k1 þ x4 � k2 þ x5 � k11:

(3)

A CDC and an adder are employed to complete the above
transformation in Fig. 4. Every cycle’s output of adder corre-
sponds to Eq. (3). The CDC can be configured to have different
latency to support different stride sizes of the CONV. Different

“add” channels of the feature map can be operated in the differ-
ent MZI units in parallel. The second method is used in this
study. The details will be shown in the next section.

2.3 Challenge

Due to the underlying nonideal characteristics of photonic MZI
devices and arrays,15–18 such as device manufacturing variations,
limited phase encoding precision, and thermal cross talk.
Codesign between the MZI-based NPU and algorithms is
needed to compensate or reduce these effects. A simulator
for device-circuit-algorithm codesign is required to facilitate
the exploration of design of photonic MZI based NPU. In ad-
dition, when the NPU scale increases, several challenges limit
the performance of the design.

1. Peripheral circuit: The overhead estimation of peripheral
circuits, such as digital-to-analog converters (DACs), analog-to-
digital converters (ADCs), lasers, and driver circuits, is crucial in
designing an MZI-based NPU. It is better than a CMOS NPU in
terms of the area efficiency and latency;

2. Bandwidth: The photonic MZI arrays work at high fre-
quency, so it consumes a large number of operands every cycle.
But the on-buffer function can be done inside the MZI arrays. It
makes the peripheral’s input bandwidth as critical factor for the
utilization of MZI array;

3. Nonidealities of devices: The nonideal effects of an MZI
device and array include limited resolution in voltage control

Fig. 3 Patching transform of the CONV to GEMM.

Fig. 4 CDC maps the CONV into the MZI unit.
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and gamma noise in the phase shifters. There are two major as-
pects of the nonideal effects of the MZI device: phase shift and
device-level noise on the MZIs. The phase shifter is produced by
the MZI device’s electronic control resolution. This means the
optical device’s control voltage cannot be within an arbitrary
precision value. Hence, there will be some weight encoding
errors when mapping the weight with a higher precision to
the real photonic chip. The interval between two phase levels
is quadratically enlarged as the voltage increases, leading to
a larger phase encoding error.

3 Joint Device-architecture-algorithm
Codesign

3.1 Architecture Design

To develop a simulator for the PNPU, a baseline architecture is
required. As shown in Fig. 5, the proposed high-level architec-
ture of a general-purpose scalable photonic MZI-based NPU
system includes four parts: a photonic MZI chip, field program-
mable gate arrays (FPGAs) (a digital application-specific inte-
grated circuit chip), peripheral drivers, and transimpedance
amplifier (TIA) modules. The FPGA fetches input data from
the host module and performs some nonlinearity operation (such
as activation function and pooling) and kernel/feature data man-
agement in the double data rate and local buffer. The drivers and
TIA modules can receive input images from off-chip and send
the results to off-chip. The operations are carried out on a pho-
tonic chip in the form of light.

The input/output bandwidth of the photonic chip plays a
significant role in the performance of the PNPU. We propose

two different methods to optimize the input/output bandwidth
of the photonic chip. In Sec. 2, we have introduced the hardware
CDC, which will save the photonic chip’s output bandwidth by
reducing the output ports number.

A broadcast and CDC method are introduced to save the in-
put bandwidth of the photonic chip, as shown in Fig. 6. When
the kernel filter shifter in the input feature map with a stride of 1,
the adjacent two patches have six pixels overlap, and only three
pixels are newly input. The delay chain can keep the last two
cycles’ history values and output nine pixels every cycle. The
input CDC can save the bandwidth about 66.7% in this case.

3.1.1 Photonic chip

The photonic chip receives the feature map data and kernel
data sent from the digital chip, performs the CONV/GEMM
operation, and sends the data back to the digital chip with
the following steps. The photonic chip consists of the laser
source, programmable logic controller, spot size convector,
modulator, beam splitter, MZI arrays, delay chain, adder,
and photodetector.

There are two different architectures of the photonic chip: the
CDC-output photonic chip and the CDC-input photonic chip.
Figure 7(a) demonstrates the CDC-output photonic chip, and
it can save the chip’s output bandwidth, whereas Fig. 7(b) shows
the CDC-input photonic chip, which is used to save the input
bandwidth of the chip. Both transmit data by broadcasting,
but the former operates at the output end and the latter works
at the input end.

3.1.2 Full-flow simulator based on design architecture

An end-to-end full-flow simulator is developed to explore the
design space of the PNPU. The full-flow simulator has the
following submodules (Fig. 8): a training framework tool, a
photon-based NPU compiler, and a back-end evaluation tool.
The full-flow simulator can support the evolution of the training
and interface accuracy and support the evaluation of the power,
performance, and area (PPA) of the PNPU.

The training framework is different from the traditional
digital NPU training framework; there are three major
differences. At first, the control weight of the MZI array should
be calculated from a complex SVD operation after getting
the traditional weight matrix. Next, our interface system is a
hybrid photonic–electronic system that can implement different
amounts of precision of the interface. The training framework
should consider the mix precision. Then the nonideal effects of
the MZI array must be taken into consideration, which can

Fig. 5 High-level architecture of a general-purpose scalable
photonic MZI-based NPU system.

Fig. 6 CDC input for saving bandwidth.
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augment the robustness of the interface results. We adapt a
noise-aware training and quantization scheme19 to enhance
the robustness of the PNPU.

The compiler’s target is to optimize the computation and
unleash the computation power of PNPU by mapping the
model into a highly optimized commands/instructions se-
quence. It consists of three parts of submodules. They are
the optimizer, the parser, and the partitioner. The optimizer
prunes the network structure and fine-tunes the weight value
so it can reduce the model complexity and improve the infer-
ence efficiency. The parser takes the pruned network structure
and the hardware configuration as input. It can transform the
network structure into computation graph intermediate repre-
sentation, control flow, and data flow information. The parti-
tioner chooses the best parallelism model and maps the
different layers of operation into electronic or photonic logic
to perform parallelism. The compiler should also know the
hardware configuration to make the best decision. The output
data are the control flow information and internally defined
commands, and they will be sent to the back-end simulator.

The back-end simulator is used to evaluate two aspects of
the design. The first one is the PPA of the PNPU. The second
one is the inference accuracy. The PPA evaluation tool models
the full design of the PNPU system, which includes buffers,
DAC, ADC, modulator, TIA, digital logic, and a laser. The
accuracy evaluation tool is used to simulate the forward infer-
ence accuracy. It does not directly model the nonidealities of
devices. Instead, it extracts the MZI array operation model and
adds some random shifter/noise to the output of the MZI op-
eration result.

3.2 Optimization of Algorithm

The photonic chip’s architecture and MZI array size have a big
influence on the performance of the PNPU system. The multiply
accumulate (MAC) utilization is determined by the MZI array
size and the network structure, and the required input/output
bandwidth depends on the photonic architecture and MZI array
size. Therefore, we use the full-flow simulator to get the opti-
mized MZI array size for the PNPU. The input data set for
the first network (Net-1) is “MNIST.” The size of the MZI array
is 28 × 28. The structure of the DNN is the CONV layer of
16 × 16, the maximum pool layer is 32 × 32, and the full con-
nection layer output is 128 × 10. The second network (Net-2)
selects a 32 × 32 MZI array to cooperate with the larger
DNN structure. The third network (Net-3) uses the 224 × 224
MZI array and the structure of visual geometry group (VGG)16.

As the size of the MZI array increases, the utilization ratio
of the MZI unit decreases, as shown in Fig. 9(a). The MZI
utilization is also related to the DNN architecture, and the
Net-3 decreases less than the Net-1 and Net-2. However, when
the MZI array size increases, the required bandwidth in-
creases, but the perf/power decreases when the size is larger
than 24 [Fig. 9(b)]. The power of the laser and peripheral
circuit increases rapidly when the size of the MZI array in-
creases. Thus, to make a trade-off among the utilization ratio,
bandwidth, and perf/power, the MZI array size should be
smaller than 32 × 32.

As discussed in Sec. 2.3, the nonidealities of the MZI unit
and the DAC accuracy significantly affect the computing accu-
racy of the NPU. We use the full-flow simulator to evaluate
the effects of the nonidealities and voltage control precision.

Fig. 7 (a) CDC-output photonic chip architecture and (b) CDC-input photonic chip architecture.

Fig. 8 End-to-end full flow simulator architecture.
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The inference accuracy results of different voltage controls from
3 to 6 bits DAC resolution are shown in Fig. 9(c). The fewer bits
of voltage control DAC, the lower accuracy will be gotten.
Consequently, the final network is shown in Table 1.

3.3 Construction and Application of Server

Based on the architecture design and algorithm optimization of
the above photonic chip, we have completed the chip fabrica-
tion. The photonic chip cut from a wafer is shown in Fig. 10.

The server [Fig. 11(a)] is built based on the architecture in
Fig. 5, and it is tested in a data center [Fig. 11(b)]. In the test
tasks of video recognition and image segmentation, the average

test accuracy exceeds 98%, and the computing power exceeds
100TOPS.

4 Conclusion
In this article, we present a multidirectional collaborative design
scheme from device to circuit to algorithm. We have developed an
end-to-end photonic neural network simulator that can monitor
from multiple directions and visually display the results of data
flow. On this basis, we have completed the design and fabrication
of a photonic chip and developed a set of servers that can be used
for AI tasks. This provides a new idea for follow-up development
and utilization of photonic chips. On-chip integrated photonic
circuits are an ideal platform for AI. However, to transform the
experimental demonstration into a real processor, it is necessary
to overcome some key emerging technologies, such as computa-
tional bandwidth, intelligent control strategy, and all-optical neural
network. In short, the PNPU has great potential in emerging AI
applications, but how to comprehensively improve the optical
computing system is still challenge.
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